8月3日,记者从中国科学院青岛生物能源与过程研究所(以下简称“青岛能源所”)获悉,该所李福利研究员带领的分子微生物工程研究组,在微藻细胞内氧水平调控和高产岩藻黄质藻种筛选方面取得进展。该工作由李福利主持完成,得到了中国科学院大学近代物理研究所李文建研究员的帮助,并获得了国家重点研发计划和国家自然科学基金的支持。
微藻作为已知的固碳效率最高的光合生物之一,能通过光合作用将环境中的CO2和水中的无机碳及小分子有机碳转化为自身生长繁殖的碳源。目前在生物能源,天然产物生产方面有着广阔的前景。李福利表示,随着各种遗传操作手段的发展,利用微藻作为底盘细胞进行合成生物学改造也逐渐开展。
但是微藻在规模化的培养过程中,尤其是室外高温高光的条件下,通常会导致微藻细胞中活性氧(ROS)和光呼吸的过量产生,从而导致细胞生长速度降低。李福利表示,作为单细胞光合生物,细胞自身的放氧水平与细胞状态和环境影响息息相关,如何调控细胞内外的氧含量水平,对于微藻养殖有着重要的作用。
李福利带领的分子微生物工程研究组,针对光合单细胞微藻细胞内氧水平调节,首次将外源透明颤菌血红蛋白基因(Vitreoscilla hemoglobin gene,vgb)转入微拟球藻(Nannochloropsis.oceanica)细胞中。透明颤菌血红蛋白能够在高氧水平下结合氧气分子,在低氧水平下释放氧气分子。引入该基因并诱导表达后,能够使其在细胞快速放氧阶段结合部分氧分子,从而降低了在光过饱和阶段细胞内氧水平,调控了细胞内的氧平衡,从而减少了对细胞的氧化损伤,同时也降低了核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的光呼吸水平。获取的转化株与野生型藻株相比,其生物量提高了7.4%~18.5%,最佳转化株中EPA含量提高了21.0%。相应地,转化株细胞内ROS水平下降了56.9%~70.0%,过氧化氢酶含量约为野生型的1.8倍。通过测定和计算溶解氧浓度,检测到转化株光呼吸水平降低。并且光呼吸途径相关的关键基因的表达水平比野生型低80%以上。此项工作的研究表明,在光合单细胞微藻中引入透明颤菌血红蛋白可以减少在光过饱和条件下的ROS损伤和调节光呼吸,改善微藻的生长,这为藻株的工业应用提供了良好的藻种与技术支持。该工作近期发表于《光合化学和光合生物学-生物学专刊》(Journal of Photochemistry & Photobiology, B: Biology)。
李福利介绍,该团队还围绕微藻种质资源和天然产物生产进行了大量的研究,前期通过同中国科学院近代物理研究所合作进行重离子辐照海洋硅藻——三角褐指藻(Phaeodactylum tricornutum),获得了大量突变藻种用以筛选海洋硅藻的天然产物——岩藻黄质(Fucoxanthin)。岩藻黄质广泛存在于大型海藻和硅藻中,对人体健康具有诸多益处,如抗糖尿病、抗肥胖、抗炎等生理活性。三角褐指藻是一种富含岩藻黄质的硅藻模式生物。在此前的研究中,李福利研究团队为了简化岩藻黄质检测方法,开发了使用分光光度计算法替代传统的使用高效液相色谱(HPLC)检测的方法,使用该方法在3-5分钟内即可完成对样品中岩藻黄质含量的检测和计算,大大提高了研究效率(Marine Drugs, 2018, 16, 33; doi:10.3390/md16010033)。近期,又进一步使用流式细胞技术对于突变株中岩藻黄质含量进行高通量筛选研究,引入了488 nm的激发光来分析三角褐指藻的发射荧光。在710 nm处观察到一个独特的光谱峰,并发现岩藻黄质含量与该处的平均荧光强度之间存在线性相关性。通过流式细胞术来筛选由重离子辐射产生的高岩藻黄质含量的突变体,培养20天后,分选得到的细胞的岩藻黄质含量比野生型高25.5%。该工作提供了一种高效、快速和高通量的方法来筛选高产岩藻黄质的突变体。该工作近期发表于《海洋药物》(Marine Drugs)。(记者 王健高 通讯员 刘佳 范勇 丁晓婷)
文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com