在“拥抱AI时代,机器学习主力 App 出海”为主题的广州研讨会上,Moloco 大中华区新客业务高级总监 Bruce Li 讲述了 Moloco 作为全球机器学习和增长营销解决方案的领导者,过去几年间在中国迅速壮大的发展历程,阐释了未来 Moloco MLaaS (Machine Learning as a Service) 愿景,以及 Moloco 在其核心产品 DSP 和所属产品矩阵加持下成功出圈的秘诀。
“Moloco 对 MLaaS 的理解是:一定要专注在机器学习给更多开发者提供价值的这个维度;Moloco Cloud DSP 取胜三大秘诀就在于首先实现规模化从而策略性触达流量需求,其次实现自动化完成深度神经网络强赋能,最后秉持行业最高标准数据安全标准助力数据透明化。”
以下为演讲实录:
非常感谢有这么多的朋友参加 Moloco 广州场的活动。Moloco 作为一家机器学习公司,公司名字的含义就是 Machine Learning Company,我们把自己的基础架构和愿景写进了公司名。Moloco 由我们一个拥有工程师背景的创始人在美国硅谷创立,这 10 年来机器学习的模型累积得非常的成熟和完善。现在我们采用的基础架构叫深度神经网络,这是机器学习 20 多个最主流的算法中最复杂,最精准的模型,Moloco 是最早采用深度神经网络来训练算法模型和广告系统的公司。过去两年内我们共实现了 5 倍的增长,这在全球广告行业内都是少有的,同时去年 Moloco 荣登2022年Inc. 5000 强企业年度榜单第 95 位。这些成绩足以证明 Moloco 发展未来可期。
结合相关数据,我们可以分享来自 Moloco 的洞见还有对中国应用出海的趋势的分析。首先从 OS (操作系统)市场占有率来看,Moloco 是整个行业中在安卓、iOS 这两个方面保持良好平衡性的一家公司,不会存在偏科的情况。其次在 CTV 联网电视方面,我们 Moloco 中国实现了从 0 到 1 强势的增长,突破了手机的品类,可以用更大的屏幕带来感受。我们的头部品类很多,涵盖了游戏和非游戏,例如游戏、电商、社交娱乐类以及 Fintech 都实现了非常好的覆盖。
放眼未来,MLaaS 愿景 + 强大的产品矩阵扶摇直上
MLaaS (Machine Learning as a Service),是未来我们观察到的一个非常重要的发展方向。纵观整个互联网广告或者是数字营销广告的编年史,20 世纪 90 年代的时候,AT&T在美国网页上投了它第一个广告,作为整个互联网时代第一个互联网数字广告,支撑其背后技术的是服务器。随着 2000 年以 Google、Facebook 为代表的互联网公司的崛起,数字营销变得更加个性化。2010 年,移动互联网时代诞生了两个关键词:云计算、大数据。Moloco 就是在这个年代诞生的,带来了很多in APP不同的广告,大家更注重效果。通过 Moloco 10 年的发展,我们发现未来将是以机器学习为主导的,同时伴随着大家越来越频繁地接触到 AI 或者大模型这样的词,未来不会是以一个简单的云计算、大数据就可以投放广告了,而是一定要看算法,基于大模型提供更加精准、更加有性价比的广告投放。
Moloco 在产品端已经完全做好了准备,除了 DSP,剩下的四款产品就是 Moloco 在过去一年多的时间里已经完全布局好的,未来在 MLaaS 这方面做的准备:
Retail Media Platform(零售媒体平台),是基于Moloco的大模型把算法提供给电商客户,电商客户可以根据的大模型定制自己的程序化广告和推荐算法,如果一个电商平台没有能力去建自己的模型,可以用 Moloco 的算法来帮他把站内的卖家盘活,包括将搜索和推荐算法做得更加精准。
AVOD (Advertising Video on Demand),本质上来讲是 Moloco 把机器学习的算法或者 Ad Server 提供给流媒体的合作伙伴,他们可以基于这个算法把整个的站内的流量和广告资源盘活,提供的还是模型和算法。
CTV 联网电视,据一些行业报告证实美国、日本、韩国在联网电视的投放和流量的增长在未来的五年都会持续增高。对 Moloco 来讲,我们也把自己的机器学习算法放到了联网电视的这套解决方案上去。
SDK (Software Development Kit),Moloco 做 SDK 不是要做自己的聚合。目的是为了要更好地服务机器学习的模型、机器学习的算法;有了更多实时、更加准确的数据才能更好地服务我们的广告主。
Moloco Cloud DSP 取胜三大秘诀:
1.规模化——策略性触达流量需求
移动互联网的流量覆盖中,Moloco 是有别于传统大媒体的流量的,我们触及到的“围墙花园”外或者叫自归因之外的流量,我们触及到的是整个移动互联网63%的in app的大流量,理论来讲流量是没有上限的。
通过三方归因平台的的报告可以看到,Moloco 在安卓的留存里面是仅次于“围墙花园”的排名,是留存最好的独立广告平台。在苹果的 SKAN 归因中,Moloco 也是除了自归因平台之外表现最好的广告平台。
2.自动化——深度神经网络强赋能
Moloco 用到的是动态CPM 的买量模式,深度神经网络的特点其实是不需要太多的常量,它处理的东西都是动态的和变量的,给它一些数据和信号,最后要得出的结果就是一个具体的 CPM 的竞价,所以 Moloco 的深度神经网络计算的就是 CPM,即用户发生转化的预估或者是概率。
Moloco 自己不产生数据,是数据的搬运工和加工者。一部分是一手数据,是来自于每个开发者自己掌握的数据,需要用我们强大的机器学习模型来为数据赋能。还有一部分是实时的上下文的数据,每个广告请求背后带来的是从开发者的变现的广告位里面来的,在合规的情况下如果能拿到这样的数据,这两个部分数据结合起来,基于我们 Campaign 的 KPI 计算出一个 ECPM,这就是对于用户行为的预估。
3.数据透明化——全素材样式安全覆盖
Moloco 完全符合业内最高的数据安全的标准,同时我们也尽量地提供最高的透明度给到客户。我们可以为客户定制报告,这样的好处在于客户可以把 Moloco 当做一个买量的聚合,帮助他们做买量策略的调整。
Moloco 是全素材样式覆盖,秉持着行业内要求最高的素材标准。不仅仅有视频渠道,而且还关注 Banner、原生的插屏广告的素材,他们的转化率和回收效果不见得比视频的素材要差。未来我们想做的事情做好了充足准备,放眼未来,我个人认为 Moloco 会以一个谦卑和积极的姿态做好我们的服务,来更好地服务中国的开发者。
关于Moloco
Moloco 致力于通过实时机器学习赋能各规模企业增长。开发者和电商平台可通过 Moloco 机器学习平台盘活一手数据,以了解公司业务表现,促进业绩增长。Moloco Cloud DSP(云营销平台)助力市场营销人员快速扩大获客规模,并通过市场检验的预测模型实现更大的用户生命周期价值。Moloco Retail Media Platform(零售媒体平台)致力于赋能市场建立效果广告业务。Moloco AVOD(Advertising Video on Demand)为流媒体和 OTT 服务商提供全栈式程序化广告方案,为广告主打造可扩展且盈利的效果广告业务。Moloco 由机器学习工程师团队于2013 年创立,目前在美国、英国、韩国、中国、日本和新加坡等国家地区均设有办事处。
免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。
文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com