科技
业界 互联网 行业 通信 科学 创业

StarRocks 3.0引领Lakehouse湖仓架构,实现One data, all analytics业务价值

来源:百家号 2024-06-24 15:54:21
A+ A-

在大数据时代,数据分析技术不断演进,从数据仓库到数据湖,再到数据湖仓,企业如何选择合适的数据分析架构?本文将深入探讨数据湖仓(Lakehouse)的概念,以及StarRocks 3.0如何引领这一创新架构,实现数据的高效分析与决策支持。

一、数据仓库的演进与挑战

数据仓库自1980年代以来一直是企业数据分析的核心。关系型数据库、日志文件等数据源的数据经过 ETL 处理,统一存储到数据仓库,用于服务 BI 报表、数据挖掘等分析场景。

数据仓库在数据质量、事务处理、查询能、数据治理等方面有明显的优势,但随着数据分析的需求越来越大,数据仓库的方案也面临一些挑战。

1.数据多样化:除了结构化的数据,半结构化、非结构化的数据越来越多。

2.数据孤岛问题:数据仓库面向主题管理,导致数据分散形成孤岛,难以形成全局统一的数据分析。

3.成本与扩展:大数据量增长带来数据存储成本与横向扩展的问题。

4.高级数据分析支持:数据仓库能很好的支持 BI 相关应用,但随着 AI 的发展,AI 应用与数据仓库的数据交互效率不高,制约了 AI 应用的发展。

二、数据湖的创新与发展

2010年,数据湖概念的提出为企业提供了一种新的数据存储与分析方式。

如果把数据仓库/集市类比为瓶装水,数据湖则是以更加原生态方式存储数据的大池子。数据湖的核心优势是统一与开放,数据基于对象存储、HDFS 等系统实现低成本、可扩展的 数据存储,并作为企业数据的 Single Source of Truth(SSOT);同时数据的数据格式是开放的,便于不同的应用灵活访问。

数据湖解决了数据成本与扩展、数据多样、数据孤岛等问题,并同时满足 BI 与 AI 应用对数据分析的诉求;但数据湖在数据分析能、数据管理与治理方面仍然存在较大的挑战。

三、湖仓分层架构的融合与应用

业界探索数据仓库与数据湖的融合,湖仓分层架构应运而生。

数据仓库与数据湖各有长处,业界持续在探索两者如何更好的融合,在过去几年湖仓分层的架构的到广泛的应用。企业数据统一写到数据湖,作为统一存储,湖上开放的数据可以服务 AI、ML 等应用场景;数据湖上部分数据经过 ETL 处理导入到数据仓库服务 BI 等 OLAP 分析场景。

湖仓分层架构融合了数据湖与数据仓库的优势,但面临一些问题与挑战。部分数据从数据湖导入到数据仓库,数据链路的增长影响数据分析的时效,两份数据也会带来冗余存储、数据口径不一致的问题;另外,对于数据仓库里加工产生的数据,仍然很难高效的服务 AI 场景。

四、数据湖仓的兴起

数据湖仓作为新一代数据分析架构,兼具数据仓库与数据湖的优势。

新兴的数据仓库如 Snowflake、Redshift、BigQuery 均采用云原生存算分离架构演进,并且支持直接查询开放数据湖的能力。数据湖在事务支持、查询能等方面的能力不如数据仓库,年来随着新兴数据湖格式如 Iceberg、Hudi、Delta Lake 等的发展,事务支持能力得到提升。

另外,在查询能上,通过不断优化数据湖上的数据分布以及增加缓存机制等技术的演进,数据湖上的数据分析能已经大幅提升,达到接数据仓库的水

从数据湖和数据仓库的演进来看,两者在不断的融合,并逐步往数据湖仓的方向演进,兼具数据湖与数据仓库的优势。数据湖仓作为一种新的数据分析架构,用户采用湖仓就能方便将数据源和数据应用连接在一起。

数据湖仓兼具数据仓库与数据湖的优势,湖仓具备开放统一的数据存储能力,并基于统一存储直接服务批处理、流处理、交互式分析等多种分析场景,实现湖仓 One data,all analytics 的业务价值。

五、StarRocks  3.0湖仓技术创新

StarRocks 2.0 版本凭借其优异的查询能在业界得到广泛应用很多用户采用湖仓分层架构,并将 Hive、Iceberg 等数据湖里的数据部分导入到 StarRocks 服务 OLAP 分析场景。

StarRocks 3.0的存算分离架构、极速湖仓分析和物化视图技术,为用户提供了高效、灵活的数据分析解决方案。

1存算分离架构

StarRocks 存算分离 2023年4月正式发布,目前已有上百家用户上线存算分离架构。与存算一体架构相比,保持了原有简洁的架构;同时极大的降低数据存储成本,提升计算的弹能力。

访问远端对象存储的延时相比本地存储有数量级的提升,StarRocks 通过 Data Cache 机制提升数据访问能,确保热数据与存算一体架构接。根据实际测试,存算分离缓存命中的情况与存算一体架构相比能完全相同;在完全冷查询时,能大概是存算一体的30-50%。

在存算分离架构下,StarRocks 可以方便的支持 Multi-warehouse 的能力;多个 Warehouse 共享一份数据,不同 Warehouse 应用在不同的 Workload,计算资源可以进行物理隔离,并且可以按需独立伸缩。

2极速湖仓分析

StarRocks 3.0 提供统一 Catalog 管理的能力,用户不仅能高效分析导入到 StarRocks 的数据,同时也支持直接分析开放数据湖 Apache Hive、Apache Iceberg、Apache Hudi、Apache Paimon 的数据,分析能相比业界同类产品快3-5倍。

StarRocks 在查询层 CBO、向量化、Runtime filter 等技术可以无缝应用到开放数据湖分析,但湖上数据分析还面临一些其他挑战。湖上数据一般以原始格式存储,数据组织上没有针对查询优化,同时访问远端对象存储/HDFS 的延时相比本地盘更高。StarRocks 通过 I/O 合并、延迟物化、Data cache 等一系列关键技术加速湖上数据分析。另外,为了让用户滑的获得 StarRocks 极速湖仓分析能,StarRocks 实现了 Trino 方言的兼容,用户可以采用 StarRocks 无缝直替 Trino。

3物化视图

StarRocks 物化视图提供了一种从预建模到后建模的方法,缩短业务建模以及上线时间。业务可以直接查询原始数据,借助 StarRocks 极致的查询能,已经能满足绝大部分场景的需求;如果直接查询能不满足,则可以按需构建物化视图来加速查询,StarRocks 支持物化视图的透明查询改写,实现业务无感的情况下实现查询加速。

湖仓应用:基于 StarRocks 构建 Lakehouse

基于 StarRocks,用户可以高效的构建 Lakehouse 数据分析架构,用户可以选择 StarRocks 内表或开放数据湖 Apache Iceberg、Apache Hudi、Apache Paimon 做为统一的数据存储,基于 StarRocks 服务BI报表、Ad-hoc 等多样化的分析场景,对于业务能要求高的查询,通过物化视图技术实现按需透明加速。

六、互联网用户的湖仓最佳实践案例

本段落分析了腾讯信、携程旅行等企业如何利用StarRocks实现数据的准实时分析和查询能的显著提升。

1.腾讯数据写入到 Iceberg,基于StarRocks实现准实时分析,数据新鲜度从小时/天到分钟即,查询能提升3-6倍。

2.携程旅行数据统一存储在Hive,通过 StarRocks直接服务BI报表,交互式分析。重点业务场景按需创建物化视图查询加速,查询能提升10+倍

结语

Lakehouse 兼具数据仓库与数据湖的优势,是下一代数据分析架构的演进趋势;StarRocks 是构建 Lakehouse 的最佳选择,已在信、小红书、携程、安银行等数十个大型企业落地实践,帮助企业实现 One data、all analytics 的业务价值。

免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。

责任编辑:kj005
文章投诉热线:182 3641 3660  投诉邮箱:7983347 16@qq.com

相关新闻

精彩推荐